Category Archives: Physical Review Letters

Odd-Parity Triplet Superconducting Phase in Multiorbital Materials with a Strong Spin-Orbit Coupling: Application to Doped Sr2IrO4

We explore possible superconducting states in t2g multiorbital correlated electron systems with strong spin-orbit coupling (SOC). In order to study such systems in a controlled manner, we employ large-scale dynamical mean-field theory (DMFT) simulations with the hybridization expansion continuous-time quantum Monte Carlo (CTQMC) impurity solver. To determine the pairing symmetry, we go beyond the local DMFT formalism using parquet equations to introduce the momentum dependence in the two-particle vertex and correlation functions. In the strong SOC limit, a singlet, d-wave pairing state in the electron-doped side of the phase diagram is observed at weak Hund’s coupling, which is triggered by antiferromagnetic fluctuations. When the Hund’s coupling is comparable to SOC, a twofold degenerate, triplet p-wave pairing state with relatively high transition temperature emerges in the hole-doped side of the phase diagram, which is associated with enhanced charge fluctuations. Experimental implications to doped Sr2IrO4 are discussed.

Zi Yang Meng, Yong Baek Kim, Hae-Young Kee


Fractionalized Charge Excitations in a Spin Liquid on Partially Filled Pyrochlore Lattices

We study the Mott transition from a metal to cluster Mott insulators in the 1/4– and 1/8-filled pyrochlore lattice systems. It is shown that such Mott transitions can arise due to charge localization in clusters or in tetrahedron units, driven by the nearest-neighbor repulsive interaction. The resulting cluster Mott insulator is a quantum spin liquid with a spinon Fermi surface, but at the same time a novel fractionalized charge liquid with charge excitations carrying half the electron charge. There exist two emergent U(1) gauge fields or “photons” that mediate interactions between spinons and charge excitations, and between fractionalized charge excitations themselves, respectively. In particular, it is suggested that the emergent photons associated with the fractionalized charge excitations can be measured in x-ray scattering experiments. Various other experimental signatures of the exotic cluster Mott insulator are discussed in light of candidate materials with partially filled bands on the pyrochlore lattice.

Gang Chen, Hae-Young Kee, Yong Baek Kim


Generic spin model for the honeycomb iridiates beyond the Kitaev limit

Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates, originating from oxygen-mediated exchange through edge-shared octahedra. However, for the j = 1/2 Mott insulator in these materials exchange from direct d-orbital overlap is relevant, and it was proposed that a Heisenberg term should be added to the Kitaev model. Here we provide the generic nearest-neighbour spin Hamiltonian when both oxygen-mediated and direct overlap are present, containing a bond dependent off-diagonal exchange in addition to Heisenberg and Kitaev terms. We analyze this complete model using a combination of classical techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic phases, 120 degree and incommensurate spiral order, as well as extended regions of zigzag and stripy order. Possible applications to Na2IrO3 and Li2IrO3 are discussed.

Jeffrey G. Rau1, Eric Kin-Ho Lee1, Hae-Young Kee1,2,*

1Department of Physics, University of Toronto, Ontario M5S 1A7, Canada, 2Canadian Institute for Advanced Research, Toronto, Ontario, Canada